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In a previous paper we dealt with supergeometry from a synthetic standpoint,
showing that the totality of vector fields on a superized version of microlinear
space is a Lie superalgebra. The main purpose of this paper is to generalize the
methods to symmetric braided geometry. Nonsymmetric braided geometry will
be discussed in a sequel to this paper.

0. INTRODUCTION

Synthetic differential geometry provides a natural framework for differ-

ential geometry in which not only global and local, but also infinitesimal
horizons are existent and emphasized. It goes without saying that standard

differential geometry is the study of differential manifolds, which are defined

to be spaces diffeomorphic locally to Euclidean spaces. Synthetic differential

geometry is the study of microlinear spaces, which are defined to be spaces

infinitesimally indistinguishable from Euclidean spaces. Such locutions as

ª vector fields are infinitesimal transformationsº are only rhetorical in standard
differential geometry, but essential in synthetic differential geometry. Syn-

thetic differential geometry is by no means a trifling reformulation of standard

differential geometry in infinitesimal terms. That the totality of vector fields

on a differential manifold is a Lie algebra is a truism in standard differential

geometry because of the coincidence of vector fields on a differential manifold
with derivations on its function algebra, but its synthetic equivalent that the

totality of vector fields on a microlinear space is a Lie algebra occupies a

naggingly ticklish position in synthetic differential geometry. For a good

introduction to synthetic differential geometry the reader is referred to

Lavendhomme (1996).
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Supergeometry is a study of supermanifolds, which are a generalization

of differential manifolds so as to include fermionic aspects besides bosonic

ones. Fermionic entities are infinitesimal in essence, for their squares always
vanish. Therefore supergeometry is an infinitesimal generalization of standard

differential geometry. Supergeometry lies at the entrance to noncommutative

geometry in the sense that the set of real supernumbers is not commutative,

but graded-commutative. For a good introduction to supergeometry the reader

is referred to Manin (1988).

Braided geometry is an elegant and far-reaching generalization of super-
geometry, in which the category of vector spaces is replaced by a braided

monoidal category. It has been pioneered and championed by Majid (1995a,b),

Marcinek (1994), and others. The standard gadget for transmogrifying braided

geometry into noncommutative geometry is bosonization, while the standard

device for translating noncommutative geometry into braided geometry is

transmutation. If the braiding is symmetric, braided geometry lies at the very
periphery of supergeometry, but encompasses not only supergeometry (based

on Bose±Fermi statistics), but also geometries based on such exotic statistics

as anyonic or color ones.

Synthetic treatments of supergeometry have been discussed by Nishi-

mura (1998b) and Yetter (1988). The principal objective of this paper is
to present a synthetic treatment of symmetric braided geometry along the

lines of the former. Nonsymmetric braided geometry will be discussed

synthetically in a sequel to this paper. We assume that the reader is

familiar with Lavendhomme’ s (1996) monograph on synthetic differential

geometry up to Chapter 3. As is usual in synthetic differential geometry,

the reader should presume that we are working in a non-Boolean topos,
so that the principle of excluded middle and Zorn’ s lemma should be

avoided. But for these two points, we could feel that we are working in

the standard universe of sets.

1. BASIC BRAIDED ALGEBRA

We choose, once and for all, a braided monoidal category C 5 (#, ^ ,

1, F , l, r, C ) satisfying the following conditions:

(1.1) # is a subcategory of the category of all k-linear spaces with a
field k.

(1.2) ^ is the standard tensor product of k-linear spaces.

(1.3) The unit object 1 is k regarded as a k-linear space in the stan-

dard manner.
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(1.4) The associativity constraint F , the left unit constraint l, and the

right unit constraint r are the standard ones of k-linear spaces.

(1.5) The braiding C is symmetric in the sense that C W,V + C V,W 5
1V ^ W for any objects V, W in #.

(1.6) There exists a finite set P of mutually nonisomorphic objects of

# including the unit object 1, say, P 5 {1, 2, 3, . . . , k}, such that:

(1.6.1) Every object p in P is a one-dimensional k-linear space.

(1.6.2) The set P is closed under ^ , i.e., for any objects p, q in P ,

there exists an object r in P such that p ^ q is isomorphic to
r in the category # (we will use p, q, r, . . . with or without

subscripts as variables over P ).

(1.6.3) Every direct sum of (possibly infinitely many) copies of objects

in P as well as all its associated canonical injections and

projections belong to #, and any object in # is a direct sum

of copies of objects in P .
(1.7) For any morphism a : U ® V in #, if a happens to be an

isomorphism of k-linear spaces, then a 2 1: V ® U belongs to #,

so that a is an isomorphism in #.

As is the custom in dealing with monoidal categories, we will often

proceed as if the monoidal category (#, ^ , 1, F , l, r) were strict, which is

justifiable by Theorem XI.5.3 of Kassel (1995). We will often write p 1 q
for r isomorphic to p ^ q in (1.6.2). Then it is easy to see the following:

Proposition 1.1. P is an abelian monoid with respect to the operation

1 defined above.

Proof. The associativity constraint F p,q,r: (p ^ q) ^ r ® p ^ (q ^ r)
guarantees that P is a semigroup. The left unit constraint lp: 1 ^ p ® p and

the right unit constraint rp: p ^ 1 ® p warrant that P is not only a semigroup,

but a monoid. The commutativity of the monoid P follows from the braiding

C p,q: p ^ q ® q ^ p. n

We choose an arbitrary nonzero element xp of each one-dimensional k-
linear space p in P once and for all. For p, q in P there exists a unique

d p,q P k such that

(1.8) C p,q(xp ^ xq) 5 d p,q(xq ^ xp)

It is easy to see that the numbers d p,q do not depend on our particular

choice {xp}p P P .

Proposition 1.2. The numbers d p,q satisfy the following identities:
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(1.9) d p,q d q,p 5 1

(1.10) d p,q 1 r 5 d p,q d p,r

(1.11) d p 1 q,r 5 d p,r d q,r

Proof. (1.9) follows from the assumption (1.5) that C p,q + C q,p 5 1p ^ q.

(1.10) and (1.11) follow from the so-called hexagon axiom, which claims
that C p,q ^ r 5 (1q ^ C p,r) + ( C p,q ^ 1r) and C p ^ q,r 5 ( C p,r ^ 1q) + (1p ^
C q,r) up to associativity and unit constraints. n

If P happens to be a group, then the pair ( P , d ) is a signed group in

terms of Marcinek (1991).

Given an object U in #, the direct sum decomposition of U into objects

in P in (1.6.3) is not unique, but the p-component of U defined as the direct

sum of the images of all the canonical injections from p into U with respect
to a particular decomposition of U will soon turn out to be independent of

our choice of a particular decomposition of U. Therefore we can safely write

Up for the p-component of U.

Proposition 1.3. Let J and J 8 be two direct sum decompositions of U
in (1.6.3). Then, for any p in P , the p-components U J

p and U J 8
p of U with

respect to J and J 8 coincide.

Proof. The proof uses a gimmick which is familiar in the proof of the

well-known fact of algebra that, although a direct sum decomposition of a
semisimple module into simple ones is not unique, its homogeneous compo-

nent affiliated to a particular simple module is well defined, for which the

reader is referred, e.g., to Wisbauer (1991, Chapter 4). For any canonical

injection i of p into U in the decomposition J and any canonical projection

p of U onto q in the decomposition J 8 with p Þ q, p + i 5 0, for otherwise

p and q would be isomorphic in # by (1.7). This means that U J
p , U J 8

p for
any p in P . By interchanging the roles of J and J 8 in the above discussion,

we have that U J 8
p , U J

p for any p in P . Therefore the desired conclusion

follows. n

Corollary 1.4. U 5 U1 % ? ? ? % Uk , so that each u P U can be decomposed
uniquely as u 5 u1 1 ? ? ? 1 uk with up P Up for any p in P . n

An element u of U which happens to consist in Up for some p in P is

called pure (of grade p), in which we will denote p by ) u ) .
The same gadget used in the proof of Proposition 1.3 establishes the

following:

Proposition 1.5. Any morphism a : U ® V in # preserves grading [i.e.,

a (Up) , Vp for each p in P ]. n
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We now enjoin that the class of morphisms in # be saturated with

respect to this property in the following sense:

(1.12) For any objects U, V in #, if a homomorphism a : U ® V of

k-linear spaces preserves grading [i.e., a (Up) , Vp for any p
in P ], then a lies in #.

The notion of an algebra in the braided monoidal category C, usually

called a C-algebra, can be defined diagrammatically as in Kassel (1995,

§III.1). A C-algebra ! with its product m !: ! ^ ! ® ! is said to be C-
commutative if m ! + C !,! 5 m !. Given a C-algebra !, the notions of a left

!-module and a right !-module in C, usually called a left !-C-module and

a right !-C-module , respectively, can be defined diagrammatically as in

Majid (1995a, §1.6). If ! happens to be C-commutative, a left !-C-module

} with its left action h : ! ^ } ® } can naturally be converted into a

right !-C-module with its right action h + C },!: } ^ ! ® }, and vice
versa, so that the distinction between left and right is not essential in the C-

commutative case. A left (right, resp.) !-C-module } is said to be C-finite-
dimensional if there exists a finite-dimensional k-linear space V in # such

that ! ^ V (V ^ !, resp.) is isomorphic to } as left (right, resp.) !-C-

modules. The notions of a left !-module algebra and a right !-module
algebra in C, usually called a left !-C-algebra and a right !-C-algebra,

respectively, can also be defined diagrammatically as in Majid (1995a, §1.6).

An ideal of a C-algebra ! is said to be a C-ideal if it belongs to #. A C-

commutative C-algebra ! is called C-local if it has a maximal C-ideal. Other

standard notions such as that of a homomorphism of C-algebras, which

can easily be formulated diagrammatically, will be used freely. Given a C-
commutative C-algebra ! and an !-C-algebra @, Spec!@ denotes the totality

of homomorphi sms of !-C-algebras from @ into !.

Now we choose, once and for all, a C-commutative C-algebra R intended

to play the role of real numbers in our braided mathematics. So we must

enjoin the following axiom on R :

(1.13) R is a C-commutative C-algebra.

Another important axiom on R will be presented in the next section.

Given a set Z, the totality of functions from Z to R is an R -C-algebra with

componentwise operations whose p-component can naturally be identified

with the totality of functions from Z to R p.

Given a finite sequence p1, . . . , pn in P , we can form the tensor C-
algebra T(p1 % ? ? ? % pn) of the k-linear space p1 % ? ? ? % pn. The quotient

C-algebra of T(p1 % ? ? ? % pn) with respect to the C-ideal generated by

{xpj xpi 2 d pi,pjxpi xpj ) 1 # i j # n} is a C-algebra called the polynomial C-
algebra of variables xp1, . . . , xpn and denoted by k[xp1, . . . , xpn]. The R -C-
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algebra R ^ k[xp1, . . . , xpn] is called the polynomial C-algebra of variables
xp1, . . . , xpn over R or the polynomial R -C-algebra of variables xp1, . . . ,

xpn and is denoted by R [xp1, . . . , xpn]. The R -C-algebra R [xp1, . . . , xpn] is
characterized by the following universality property:

Proposition 1.6. The R -C-algebra R [xp1, . . . , xpn] is C-commutative.

For any C-commutative R -C-algebra ! and any morphisms a i: pi ® ! in

# (1 # i # n), there exists a unique homomorphism a of R -C-algebras from

R [xp1, . . . , xpn] to ! whose restriction to pi is a i (1 # i # n). n

A Lie C-algebra over R or a lie R -C-algebra is an R -C-module L with

its left R -C-module structure h : R ^ L ® L and its associated right R -C-

module structure h 8: L ^ R ® L which is endowed with a morphism +:

L ^ L ® L in # satisfying the following conditions:

(1.14) + + h 12 5 h + +23 on R 3 L 3 L
(1.15) + + h 823 5 h 8 + +12 on L 3 L 3 R
(1.16) + + C 5 2 + on L 3 L
(1.17) + + +23 1 + + +23 + C 23 + C 12 1 + + +23 + C 12 + C 23 5 0 on

L 3 L 3 L

In the above list of conditions such notations as +23 are the familiar
conventions in the realm of quantum groups, for which the reader is referred

to Kassel (1995, §VIII.2). Given u, v P L, we will often write [u, v] for

+(u ^ v). Conditions (1.16) and (1.17) can be rephrased in the following form:

Proposition 1.7. Conditions (1.16) and (1.17) are equivalent to the fol-

lowing conditions, respectively:

(1.18) [v, u] 5 2 d q,p[u, v] for any u P Lp and any v P Lq.

(1.19) [u, [v, w]] 1 d p,q 1 r[v, [w, u]] 1 d p 1 q,r[w, [u, v]] 5 0 for any

u P Lp, any v P Lq, and any w P Lr . n

2. WEIL C-ALGEBRAS AND C-MICROLINEARITY

A Weil C-algebra is a C-local C-commutative R -C-algebra } with an

R -C-finite-dimensional maximal C-ideal m for which } 5 R % m (the first

component is the R -C-algebra structure). By way of example, the quotient

C-algebra of the polynomial C-algebra R [x1, . . . , xn] with respect to the C-

ideal generated by {xi xj ) 1 # i # n} is a Weil C-algebra and is denoted by

}(p1, . . . , pn) with pi 5 ) xi ) (1 # i # n). Given Weil C-algebras }1 and
}2 with maximal C-ideals m1 and m2, respectively, a homomorphism of R -

C-algebras w : }1 ® }2 is said to be a homomorphism of Weil C-algebras
if it preserves maximal C-ideals, i.e., if w (m1) , m2. A finite limit diagram

of R -C-algebras is said to be a good finite limit diagram of Weil C-algebras
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if every object occurring in the diagram is a Weil C-algebra and every

morphism occurring in the diagram is a homomorphi sm of Weil C-algebras.

The diagram obtained from a good finite limit diagram of Weil C-algebras
by taking Spec R is called a quasi-colimit diagram of C-small objects.

The braided version of the general Kock axiom, called the general C-
Kock axiom, goes as follows:

(2.1) For any Weil C-algebra }, the canonical R -C-algebra homomor-

phism } ® R Spec R (}) is an isomorphism.

Spaces of the form Spec R (}) for some Weil C-algebras } are called

C-infinitesimal spaces or C-small objects. The C-infinitesimal space corres-

ponding to Weil C-algebra }(p1, . . . , pn) is denoted by D(p1, . . . , pn). In

particular, D corresponding to Weil C-algebra R is denoted by 1. The mapping
from 1 to a C-infinitesimal space Spec R (}) corresponding to the canonical

projection } ® R is usually denoted by 0.

The C-infinitesimal space D(1, . . . , k) will play a very important role

in our discussion of tangency. First we note that D(1, . . . , k) can be identified

with the subset of R consisting of all d P R such that dpdq 5 0 for any p,

q P P . Under this identification (d1, . . . , dk) P D(1, . . . , k) corresponds
to d1 1 ? ? ? 1 dk P R . What concerns us most about D(1, . . . , k) is that it

is, regarded as a subset of R , closed under the left and right actions of R on

itself. More specifically, given a P R and (d1, . . . , dk) P D(1, . . . , k), a(d1,

. . . , dk) and (d1, . . . , dk)a are (e1, . . . , ek) and ( f1, . . . , fk) respectively,

where ep is the sum of aqdr ’ s and fp is that of dqar’ s with q 1 r 5 p.

Just as the general Kock axiom paved the way to the introduction of a
microlinear space, its braided version invokes the notion of a C-microlinear
space, which is by definition a space } satisfying the following condition:

(2.2) For any good finite limit diagram of Weil C-algebras with its

limit }, the diagram obtained by taking Spec R and then expo-
nentiating over } is a limit diagram with its limit }Spec R }.

The following proposition guarantees that we have many C-microlin-

ear spaces.

Proposition 2.1. (1) R p is a C-microlinear space for any p in P .

(2) The class of C-microlinear spaces is closed under limits and exponen-

tiation by an arbitrary space.

Proof. Statement (1) follows directly from axiom (2.1), while statement

(2) can be established as in Lavendhomme (1996, §§2.3, Proposition 1). n

Proposition 2.2. The diagram
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D(p)

½
½
¯

j1
p,q

½½
½¯
0 m

p ,q

1 ® D(p) 3 D(q) Ð ® D(p 1 q)
-
½
½

j2
p,q

½
½½¯

D(q)

is a quasi-colimit diagram of C-small objects, where

(2.3) j1
p,q

(d ) 5 (d, 0) for any d P D(p)

(2.4) j2
p,q

(d ) 5 (0, d ) for any d P D(q)

(2.5) mp,q(d1, d2) 5 d1d2 for any (d1, d2) P D(p) 3 D(q)

Proof. As in Lavendhomme (1996, §2.2, Proposition 7). n

Corollary 2.3. Let } be a C-microlinear space and m P }. Let g be

a function from D(p) 3 D(q) to } such that g (d1, 0) 5 g (0, d2) 5 m for

any d1 P D(p) and any d2 P D(q). Then there exists a unique function u :

D(p 1 q) ® } such that g (d1, d2) 5 u (d1d2) for any (d1, d2) P D(p) 3 D(q).

Proposition 2.6. The diagrams

0
1 Ð Ð ® D(q)

½
½
¯

½
½
¯

0 i2
p,q

D(p) Ð Ð ® D(p, q)
i
p ,q
1

0
Ð Ð Ð Ð Ð Ð Ð ±® D(1, . . . , k)1

½
½
¯

½
½
¯

0 i(1 ,...,k)
2

2

D(1, . . . , k) Ð Ð ® D(l, . . . , k, 1, . . . , k)
i(1,...,k)

2

1

are quasi-colimit diagrams of C-small objects, where

(2.6) ip,q
1 (d ) 5 (d, 0) for any d P D(p)

(2.7) ip,q
2 (d ) 5 (0, d ) for any d P D(q)

(2.8) i(1,...,k)2
1 (d1, . . . , dk) 5 (d1, . . . , dk, 0, . . . , 0) for any (d1, . . . ,

dk) P D(1, . . . , k)

(2.9) i(1,...,k)2
2 (d1, . . . , dk) 5 (0, . . . , 0, d1, . . . , dk) for any (d1, . . . ,

dk) P D(1, . . . , k)
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Proof. As in Lavendhomme (1996, §2.2, Proposition 6). n

Corollary 2.5. Let } be a C-microlinear space and m P }. For any

functions g 1: D(p) ® } and g 2: D(q) ® } with g 1(0) 5 g 2(0) 5 m, there

exists a unique function lp,q
( g 1, g 2): D(p, q) ® } such that lp,q

( g 1, g 2) + i p,q
1 5 g 1 and

lp,q
( g 1, g 2) + i p,q

2 5 g 2. For any functions u 1, u 2: D(1, . . . , k) ® } with u 1(0,
. . . , 0) 5 u 2(0, . . . , 0) 5 m, there exists a unique function l(1,...,k)2

( d 1, d 2) : D(1, . . . ,

k, 1, . . . , k) ® } such that l(1,...,k)2
( u 1, u 2) + i (1,...,k)2

1 5 u 1 and l(1,...,k)2
( u 1, u 2) + i (1,...,k)2

2 5 u 2.

3. DIFFERENTIAL CALCULUS

The braided version of the Kock±Lawvere axiom, which is subsumed

under the braided version of the general Kock axiom discussed in the previous

section, goes as follows:

(3.1) For any function f : D(p) ® R , there exists a unique b P R such

that f (d ) 5 f (0) 1 bd for any d P D.

It is easy to see that this axiom is equivalent to the following:

(3.2) For any function f: D ® R , there exists a unique b8 P R such

that f (d ) 5 f (0) 1 db8 for any d P D.

Indeed, it is easy to see that b in (3.1) and b8 in (3.2) determine each

other by the following simple relation:

(3.3) b8q 5 d q,pbq for any q in P .

These two equivalent axioms as a whole are called the C-Kock± Lawvere
axiom. The main objective of this section is to discuss some consequences

of this axiom without assuming the general C-Kock axiom.

Given a function f : R p ® R and a P R p, by one of the equivalent

axioms (3.1) and (3.2), there exist unique (
-

D p f )(a) P R and unique
( fD

¤
p)(a) P R such that for any d P D(p),

(3.4) f (a 1 d ) 5 f (a) 1 d(
-

D p f )(a)
f (a 1 d ) 5 f (a) 1 ( fD

¤
p)(a)d(3.5)

The functions a P R p j (
-

D p f )(a) and a P R p j (D
¤

p f )(a) are denoted by
-

D p f and fD
¤

p, respectively.

Proposition 3.1. Let f and g be functions from R p to R . Let a P R .
Then we have

(3.6)
-

D p( f 1 g) 5
-

D p f 1
-

D pg
(3.7) ( f 1 g)D

¤
p 5 fD

¤
p 1 gD

¤
p

(3.8) (af )D
¤

p 5 a( fD
¤

p)
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(3.9)
-

D p( fa) 5 (
-

D p f )a
(3.10)

-
D p( fg) 5 (

-
D p f )g 1 d q,pf(

-
D pg) provided that f is pure of

grade q
( fg)D

¤
p 5 d p,q( fD

¤
p)g 1 f (gD

¤
p) provided that g is pure of(3.11)

grade q

Proof. As in Lavendhomme (1996, §1.2, Proposition 1). n

Now we discuss a simple variant of Taylor’ s formula for a function f:
R p1 3 ? ? ? 3 R pn ® R . We denote by -¤/ - xi the operator D

¤
pi (1 # i , n).

The formula goes as follows:

Theorem 3.2. Let a P R p1 3 ? ? ? 3 R pn. Then there exist unique

bk,i1...ik P R for each k (0 # k # n) and each sequence 1 # i1 , ? ? ? , ik #
n such that for any d 5 (d1, . . . , dn) P D(p1) 3 ? ? ? 3 D(pn),

(3.12) f (a 1 d ) 5 a0 1 o
n

i 5 1
b1,idi 1 o

i1 , i2

b2,i1i2di1di2

1 ? ? ? 1 o
1 # i1 , ? ? ? , ik # n

bk,i1...ikdi1 . . . dik 1 ? ? ?

1 bn,1...nd1 . . . dn

More specifically, we have

(3.13) bk,i1...ik 5 1 f -¤

- xk

? ? ?
-¤

- xi 2 (a)

Proof. As in Lavendhomme (1996, §§1.2.2). n

4. BRAIDED TANGENCY

Let } be a microlinear space and m0 P }. These entities shall be fixed
throughout this and the next sections. A vector tangent to } at m0 is a

mapping t: D(1, . . . , k) ® } with t(0, . . . , 0) 5 m0. Now we would like

to endow the set Tm0} of tangent vectors to } at m0 with an R -module

structure. The set Tm0} is called the braided tangent space of } at m0. The

left product a ? t of t P Tm0} by a P R and the right product t ? b of t by

b P R are defined by the following formulas:

(4.1) (a ? t)(d ) 5 t(da)

(4.2) (t ? b)(d ) 5 t(bd )

for any d P D(1, . . . , k). Given t1, t2 P Tm0}, their sum t1 1 t2 is defined

to be
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(4.3) (t1 1 t2)(d ) 5 l(1,...,k)2
(t1,t2) (d, d )

for any d P D(1, . . . , k).

Proposition 4.1. With the above operations the set Tm0} is an R -C-

bimodule.

Proof. As in Lavendhomme (1996, §3.1, Proposition 1). n

Proposition 4.2. The R -C-bimodule Tm0} is Euclidean in the sense that

it satisfies the following condition:

(4.4) For any function f : D(p) ® Tm0}, there exists a unique t P
Tm0} such that f (d ) 5 f (0) 1 d ? t for any d P D(p).

Proof. As in Lavendhomme (1996, §§3.1, Proposition 3.2). n

Now we define pure tangent spaces Tp
m0} of } at m0 to be the set of

functions t: D(p) ® } with t(0) 5 m0. It is endowed with a k-linear space

structure by decreeing that for any a P k, any t, t1, t2 P Tp
m0} and any d P D(p),

(4.5) (t1 1 t2)(d ) 5 lp2

(t1,t2)(d, d )

(4.6) (a ? t)(d ) 5 t(ad )

Proposition 4.3. With the above operation the set Tp
m0} is a k-linear

space.

Proof. As in Lavendhomme (1996, §3.1, Proposition 1). n

The injections i1,...,k
p : D(p) ® D(1, . . . , k) induce functions pp: Tm0}

® Tp
m0}. Similarly the projections p1,...,k

p : D(1, . . . , k) ® D(p) induce

functions ip: Tp
m0} ® Tm0}. Then we have the following result.

Lemma 4.4. Tm0} is a biproduct of Tp
m0}’ s within the abelian category

of k-linear spaces in the sense that

(4.7) pp + ip 5 1Tp
m0} for any p in P

(4.8) i1 + p1 1 ? ? ? 1 ik + pk 5 1Tm0}

Proof. As in Nishimura (1998b, Lemma 4.5). n

If Tp
m0} is to be regarded as k-linear subspaces of Tm0} in the above

sense, then it is not difficult to see that Tp
m0 is exactly the p-component of

Tm0}. If } is R p and P is not only a monoid but a group, then the R -C-

module Tm0} is easily seen to be canonically isomorphic to R , where 1 P
R corresponds to the pure tangent vector d P D(p) j m0 1 d. We set

Tp} 5 ø m P }Tp
m}.

A vector field on } is a tangent vector to }} at 1}, i.e., it is an

assignment X of an infinitesimal transformation Xd: } ® } to each d P



2844 Nishimura

D(1, . . . , k) with X0 5 1}. The totality of vector fields on } is denoted by

x (}). As we discussed in Lemma 4.4, the R -module x (}) can be decomposed

into its pure parts x p(}), which consists of all assignments X of an infinitesi-
mal transformation Xd: } ® } to each d P D(p) with X0 5 1}.

Given two pure vector fields X, Y on }, we now define their Lie bracket

[X, Y ] by Corollary 2.3 as follows:

(4.9) If X P x p(M ) and Y P x q(M ), then [X, Y ] is the unique vector
field of type p 1 q on } such that [X, Y ]d1d2 5 Y 2 d2 + X 2 d1 +
Yd2 + Xd1 for any d1 P D(p) and any d2 P D(q).

Once the Lie bracket of any two pure vector fields on } is defined, we

can define the Lie bracket [X, Y ] of two nonpure vector fields X, Y on }
by the following formula:

(4.10) [X, Y ] 5 S p,q P P [Xp, Yq]

The proof of the following theorem is relegated to the succeeding section.

Theorem 4.5. x (M ) is a Lie R -C-algebra.

5. MICROSQUARES AND MICROCUBES

The main objective of this section is to discuss fundamental properties

of microsquares and microcubes in our braided context and apply them to

Lie brackets of vector fields.
A microsquare of type (p, q) on } at m P } is a function a from

D(p) 3 D(q) to } with a (0, 0) 5 m. The totality of microsquares of type

(p, q) on } at m is denoted by Tp,q
m }, and we set Tp,q} 5 ø m P }Tp,q

m }.

Lemma 5.1. The diagram

i
D(p, q) Ð Ð ® D(p) 3 D(q)

½
½
¯

½
½
¯

i c p ,q

D(p) 3 D(q) Ð Ð ® (D(p) 3 D(q)) Ú D(p 1 q)
w p ,q

is a quasi-colimit diagram of small objects, where

(5.1) (D(p) 3 D(q)) Ú D(p 1 q)

5 {(d1, d2, d3) P D(p) 3 D(q) 3 D(p 1 q) ) d1d3 5 d2d3 5 0}
(5.2) w p,q(d1, d2) 5 (d1, d2, 0) for any (d1, d2) P D(p) 3 D(q)

(5.3) c p,q(d1, d2) 5 (d1, d2, d1d2) for any (d1, d2) P D(p) 3 D(q)

Proof. As in Lavendhomme (1996, §3.4, pp. 92±93, Lemma). n
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Proposition 5.2. For any a 1, a 2 P Tp,q}, if a 1 ) D(p,q) 5 a 2 ) D(p,q), then

there exists a unique function g
p,q
( a 1, a 2): (D(p) 3 D(q)) Ú D(p 1 q) ® } such

that g
p,q
( a 1, a 2) + w p,q 5 a 1 and g

p,q
( a 1, a 2) + c p,q 5 a 2. In this case we define a pure

tangent vector a 2
?

p, q
a 1 of type p 1 q to } as follows:

(5.4) 1 a 2
?

p, q
a 1 2 (d ) 5 g

p,q
( a 1, a 2)(0, 0, d ) for any d P D(p 1 q)

Proof. This follows from Lemma 5.1. n

Proposition 5.3. For any a 1, a 2 P Tp,q
m } with a 1 ) D(p,q) 5 a 2 ) D(p,q), we have

(5.5) a 1
?

p, q
a 2 5 2 1 a 2

?
p, q

a 1 2
Proof. We define h: (D(p) 3 D(q)) Ú D(p 1 q) ® } as follows:

(5.6) h(d1, d2, d3) 5 gp,q
( a 1, a 2)(d1, d2, d1d2 2 d3) for any

(d1, d2, d3) P (D(p) 3 D(q)) Ú D(p 1 q)

Then it is easy to see that h + w p,q 5 a 2 and h + c p,q 5 a 1. Therefore h 5
g

p,q
( a 2, a 1), which implies (5.5) at once. n

For any a P Tp,q}, we define S ( a ) P Tq,p} to be

(5.7) S ( a )(d1, d2) 5 a (d2, d1) for any (d1, d2) P D(p) 3 D(q)

The following proposition reveals the underlying structure of the braided

anticommutativity of vector fields with respect to Lie brackets.

Proposition 5.4. For any a 1, a 2 P Tp,q} with a 1 ) D(p,q) 5 a 2 ) D(p,q), we have

(5.8) S ( a 1) ) D(q,p) 5 S ( a 2) ) D(q,p)

(5.9) S ( a 2)
?

q, p
S ( a 1) 5 d p,q 1 a 2

?
p, q

a 1 2
Proof. Let us define h: (D(q) 3 D(p)) Ú D(p 1 q) ® } as follows:

(5.10) h(d1, d2, d3) 5 g
p,q
( a 1, a 2)(d2, d1, d p,qd3) for any

(d1, d2, d3) P (D(q) 3 D(p)) Ú D(p 1 q)

Then it is easy to see that h + w q,p 5 S ( a 1) and h + c q,p 5 S ( a 2),
whence (5.9) follows. n

Now we discuss a braided version of a microcube. A microcube of type
(p, q, r) on } at m P } is a function g from D(p) 3 D(q) 3 D(r) to }
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with a (0, 0, 0) 5 m. The totality of microcubes of type (p, q, r) on } at

m is denoted by Tp,q,r
m }, and we set Tp,q,r} 5 ø m P }Tp,q,r

m }.

Now we relativize the partial binary operation
?

q, r
to Tp,q,r}. As discussed

in Nishimura (1998a, Section 1.3), we can do so by regarding Tp,q,r} either
as Tp(Tq,r}) or as Tq,r(Tp}). Fortunately both approaches result in the same

partial operation
i

p, q, r
; given g 1, g 2 P Tp,q,r}, g 2

i

p, q, r
g 1 is defined iff

g 1 ) D(p) 3 D(q,r) 5 g 2 ) D(p) 3 D(q,r), in which it is a microsquare of type (p, q 1 r)

on }.

Let Perm3 denote the group of permutations of the set {1, 2, 3}. Given

g P Tp1,p2,p3M and r P Perm3, we define S r ( g ) P Tp r 2 1
(1),p r 2 1

(2),p r 2 1
(3)}

as follows:

(5.11) S r ( g )(d1, d2, d3) 5 g (d r (1), d r (2), d r (3)) for any

(d1, d2, d3) P Dp r 2 1
(1) 3 Dp r 2 1

(2) 3 Dp r 2 1
(3)

Now we define partial binary operations
2Ç

p, q, r
and

3Ç

p, q, r
in Tp,q,r} as

follows:

(5.12) g 2
2Ç

p, q, r
g 1 is defined iff

S (132)( g 2)
i

q, r, p
S (132)( g 1) is defined, in which

the former is defined to be the latter.

(5.13) g 2
3Ç

p, q, r
g 1 is defined iff

S (123)( g 2)
i

r, p, q
S (123)( g 1) is defined, in which

the former is defined to be the latter.

The following theorem reveals the underlying structure of the braided

Jacobi identity of Lie brackets of vector fields.

Theorem 5.5. Let g 123, g 132, g 213, g 231, g 312, g 321 P Tp,q,r
m }. Let us

suppose that the following three expressions are well defined:

(5.14) 1 g 123
i

p, q, r
g 132 2 ?

p, q 1 r 1 g 231
i

p, q, r
g 321 2

(5.15) 1 g 231
2Ç

p, q, r
g 213 2 ?

q, p 1 r 1 g 312
2Ç

p, q, r
g 132 2

(5.16) 1 g 312
3Ç

p, q, r
g 321 2 ?

r, p 1 q 1 g 123
3Ç

p, q, r
g 213 2

Letting j 1, j 2, and j 3 denote the above three expressions in order, we have
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(5.17) j 1 1 d p,q 1 r j 2 1 d p 1 q,r j 3 5 0

Proof. As in Nishimura (1997, §3). n

Now we apply the above theory of microsquares and microcubes to Lie

brackets of vector fields. We denote by x p,q(}) the totality of microsquares
on }} at 1}. We denote by x p,q,r(}) the totality of microcubes on }} at

1}. Given X P x p(}), Y P x q(}), and Z P x r(}), we define Y * X P
x p,q(}) and Z * Y * X P x p,q,r(}) as follows:

(5.18) (Y * X )(d1, d2) 5 Yd2 + Xd1 for any

(d1, d2) P D(p) 3 D(q)

(5.19) (Z * Y * X )(d1, d2, d3) 5 Zd3 + Yd2 + Xd1 for any

(d1, d2, d3) P D(p) 3 D(q) 3 D(r)

Proposition 5.6. Let X P x p(}) and Y P x q(}). Then we have

(5.20) [X, Y ] 5 Y * X
?

p, q
S (X * Y )

Proof. As in Lavendhomme (1996, §3.4, Proposition 8). n

Theorem 5.7. Let X P x p(}) and Y P x q(}). Then we have

(5.21) [X, Y ] 5 2 d p,q[Y, X ]

Proof. We have

[X, Y ]

5 Y * X
?

p, q
S (X * Y )

5 2 1 S (X * Y )
?

p, q
Y * X 2 [Proposition 5.3]

5 2 d p,q 1 X * Y
?

q, p
S (Y * X ) 2 [Proposition 5.4]

5 2 d p,q[Y, X ] n

Proposition 5.8. Let X P x p(}), Y P x q(}), and Z P x r(}). Let it be

the case that

(5.22) g 123 5 Z * Y * X
(5.23) g 132 5 S (23)(Y * Z * X )

(5.24) g 213 5 S (12)(Z * X * Y )

(5.25) g 231 5 S (123)(X * Z * Y )
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(5.26) g 312 5 S (132)(Y * X * Z )

(5.27) g 321 5 S (13)(X * Y * Z )

Then the right-hand sides of the following three identities are meaningful,
and all the three identities hold:

(5.28) [X, [Y, Z ]]

5 1 g 123
i

p, q, r
g 132 2 ?

p, q 1 r 1 g 231
i

p, q, r
g 321 2

(5.29) [Y, [Z, X ]]

5 1 g 231
2Ç

p, q, r
g 213 2 ?

q, p 1 r 1 g 312
2Ç

p, q, r
g 132 2

(5.30) [Z, [X, Y ]]

5 1 g 312
3Ç

p, q, r
g 321 2 ?

r, p 1 q 1 g 123
3Ç

p, q, r
g 213 2

Proof. As in Nishimura (1997a, Proposition 2.7). n

Theorem 5.9. Let X P x p(}), Y P x q(}), and Z P x r(}). Then

(5.31) [X, [Y, Z ]] 1 d p,q 1 r[Y, [Z, X ]]

1 d p 1 q,r[Z, [X, Y ]] 5 0

Proof. Follows from Theorem 5.5 and Proposition 5.8. n

We conclude this section by remarking that Theorems 5.7 and 5.9 consti-

tute a proof of Theorem 4.5.
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